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Abstract—In recent years, Federated Learning (FL) has gained
increasing interests as a distributed on-device learning paradigm
while preserving users’ privacy. Although previous works have
addressed the data and system heterogeneities in FL, the modality
heterogeneity where clients collect data from different types of
sensors (accelerometer, gyroscope, etc) is less explored. Typical
FL methods assume uni-modal sensor which is not applicable
in MFL due to modality heterogeneity. State-of-the-art MFL
methods use modality-specific blocks, usually recurrent neural
networks (RNN), to process each modality but they are difficult
and expensive to run on edge devices. A new MFL algorithm
is desired to jointly learn from heterogeneous sensor modalities
under limited resources and energy. In this paper, we propose
a novel hybrid framework based on Hyperdimensional Com-
puting (HD) and deep learning, named MultimodalHD, to learn
effectively and efficiently from edge devices with different sensor
modalities. MultimodalHD uses a static HD encoder to encode
raw sensory data of different modalities into high-dimensional
low-precision hypervectors, after which the multimodal hyper-
vectors are fed to an attentive fusion module for learning richer
representations via inter-modality attention. Moreover, we design
a proximity-based aggregation strategy at the cloud to alleviate
the modality interference between clients. MultimodalHD is de-
signed to fully utilize the strengths of both worlds: the computing
efficiency of HD, and the capability of deep learning techniques to
learn complex patterns. We conduct experiments on multimodal
human activity recognition (HAR) datasets. Our results show
that MultimodalHD delivers comparable (if not better) accuracy
performance compared to state-of-the-art MFL algorithms, while
being 2x - 8x more efficient in terms of training time.

I. INTRODUCTION

With recent advancements in machine learning and edge
computing platforms, Federated learning (FL) has become
a promising direction for distributed training and Internet-
of-Things (IoT) deployments. While previous works have
studied how to address data heterogeneity (e.g. non-iid data
distribution on clients [1]), system heterogeneity (e.g. varied
computational and communication delays [2]), and unexpected
stragglers (e.g. client drops due to various types of failures [3])
in FL, very little has been done to address Multimodal Fed-
erated Learning (MFL). In contrast to uni-modal FL which
assumes a single sensor modality and an identical model archi-
tecture on all clients, Multimodal FL considers heterogeneous
sensor modalities, which is a more realistic setting because not
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Fig. 1: An example of the Multimodal Federated Learning sce-
nario with 3 different sensor modalities on 4 clients, and a cloud.
Only model weights are exchanged and aggregated at the cloud.

all edge devices always have exactly the same sensors. For
example, gyroscopes, accelerometers and magnetometer can
all be used to monitor human activity, but not all of them may
be available on one client (Fig. 1). Traditional FL frameworks
(such as FedAvg [4]) assume uni-modal sensors and uniform
model architectures, hence struggle with heterogeneous sensor
modalities among clients. State-of-the-art MFL designs use
separate neural networks to process each modality, which are
very expensive in terms of computation [S5]-[7]. They use
sophisticated and complex designs, such as deep canonically
correlated autoencoders [5] and split nerual network design [7]
to handle modality heterogeneity in MFL setting. Edge devices
are usually much more limited in terms of computational
capabilities, network connectivity and are often powered by
batteries. Therefore, a new lightweight FL algorithm is needed
to learn both effectively and efficiently under arbitrary modality
combinations at the edge.

Hyperdimensional Computing (HD) is a new brain-inspired
computing paradigm where data are encoded into high-
dimensional and often low-precision vectors called hypervec-
tors. Cognitive tasks such as classification can be performed
in HD space through a set of simple operations. Compared
to traditional neural networks (NNs), HD-based designs have
achieved similar accuracy in various applications while sav-
ing magnitudes of execution time and energy [8]-[12]. The
efficiency of HD makes it a suitable candidate for MFL
applications. However, previous works on HD multimodal
fusion simply combine the hypervectors of different modalities
into one and apply the common HD training [13], [14]. Such



approach failed to exploit the complex inter-modal dynamics,
which has been shown to be important in many previous Deep
Learning based approaches [6], [7], [15].

In this paper, we propose a novel hybrid framework named
MultimodalHD which combines the efficiency of HD and
capability of Deep Learning (DL). MultimodalHD utilizes a
static HD encoder to encode the multimodal time-series data
into hypervectors. We then design a novel attention module
which fuses hypervectors with reinforced inter-modality cor-
relations. Furthermore, we devise a proximity-based aggre-
gation strategy in the cloud to alleviate interference between
clients. Although our method is applicable to variety of MFL
applications, in this paper we specifically focus on human
activity recognition (HAR) tasks. HAR naturally comes with
multimodal sensors (accelerometer, gyroscope, etc), and is
often performed on small mobile devices. Thus HAR is an
ideal use case that requires effective MFL while imposing
strict resource constraint.

In summary, MultimodalHD is the first work that integrates
HD and DL designs for effective and efficient MFL:

o MultimodalHD uses HD encoder to efficiently extract
information from multimodal time-series sensor data,
bypassing traditional recurrent neural network (RNN).

¢ MultimodalHD includes two novel DL components to
improve multimodal representation learning and alleviate
modality interference: attention-based fusion on local
clients and proximity-based aggregation on the cloud.

o Our evaluation of three HAR datasets shows that Multi-
modalHD is 2x - 8x more time efficient to train compared
to state-of-the-art multimodal FL baselines RNNs.

MultimodalHD is complementary to the other FL contribu-
tions, such as pruning [16] and client selection [2], thus can
be easily combined with these techniques to achieve further
improvements. As an example, in Sec. IV-B, we study the
effects when combining MultimodalHD with various aggrega-
tion techniques.

II. RELATED WORKS

Multimodal Federated Learning (MFL). Learning from
multimodal data in a federated setting has gained significant
interests in recent years. In contrast to traditional FL. which
only focus on training uni-modal model, MFL is a more
realistic and useful setting to consider especailly in IoT and
HAR related tasks where clients are often multimodal and
diverse. MFL adds complexity in model aggregation due to
the presence of modality heterogeneity among clients and the
fusing of different modalities.

Multimodal-FL. [5] employs a split autoencoder on each
client to learn multiple modalities without supervision.
CreamFL [17] uses inter and intra-modal contrasts to com-
plement information of the absent modality. However, both
works do not have personalized models to account for client-
specific pattern. MMFL [6] enables personalization with a
metalearning-based approach, but its co-attention mechanism
can only fuse between two modalities. Both FedMSplit [7]

TABLE I: Comparing MultimodalHD and state-of-the-art Mul-
timodal Federated Learning works.

Method Modality Personal- Hardware
Heterogeneity ization Efficiency
[5]1, [17] v X X
[6] Limited v X
(71, [18] v v x
MultimodalHD v v v

and Harmony [18] split the client models into modality-
specific blocks to harness the modality heterogeneity. All
these methods use separate Recurrent Neural Nets (RNN) as
feature extractors for each modality, which are expensive to
train and parallelize due to the sequential nature of RNN.
In contrast, our design, MultimodalHD enables personalized
multimodal federated learning while excelling in efficiency.
The comparison is detailed in Table 1.

Hyperdimensional Computing. Although HD has been
successfully applied in various scenarios [8]-[12], HD-based
multimodal or federated learning are less visited. HDC-
MER [13] and Schelegel et al. [14] bundle the encoded
hypervectors from different modalities for fusion, and use
the fused hypervectors for emotion recognition and driving
style classification respectively. FHDnn [19] and FedHD [15]
enable FL by sharing a fixed HD encoder among all clients,
learning HD class hypervectors on clients from local data and
aggregating the class hypervectors averagely at the cloud. To
the best of the authors’ knowledge, MultimodalHD is the first
HD-based design for MFL.

III. PRIMITIVES

In this section, we provide background on the MFL problem
definition, HD primitives and motivation for attention based
multimodal fusion.

A. Multimodal Federated Learning: Problem Definition

We consider a supervised MFL problem with personaliza-
tion. To model a realistic heterogeneous MFL setting, we
pose no restriction on the number of modalities on a certain
client. Let C}, denote a client for k € {1, ..., N}. Specifically,
Cx = {Dg, 0, wy } where Dy is the labeled multimodal dataset
on client k, 6 is a HD encoder shared among all clients, and wy,
denotes personalized model weights on client k. Suppose B is
the set of all modalities in the system, By, is the set of locally
available modalities on client k£ with B, C B. Assuming
client k& has ny local data samples, let Dy = {(X;, y:)} %,
be the local multimodal dataset where X; = {;l:fj )|Vj € B}
and y; are the raw multimodal sample and the label respec-
tively. Each xl(»J ) of a sample X; represents time-aligned uni-
modal sensor readings in a sliding time window of length
T'. Following [7], we set the objective of our MFL problem
as learning a set of different but correlated model weights
{wl...wN},wleé (%) 75 75 WN .

ng

Lmin DO Fwis 0(Xa), 1)) + R(wy, wiwn) (1)

k=1 i=1
where f(wg;0(X;),y;) is a loss function defined on model
weights wy, encoded hypervector 6(X;) and true label y;. R
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Fig. 2: Left: Generate random level hypervectors. Right: the com-
plete HD encoding process for time-series data.

is a regularization term that forces certain level of similarity
between wj, and the models from other clients, thus encour-
aging positive knowledge share among clients.

B. HD Primitives

Hyperdimensional computing (HD) is a lightweight com-
puting paradigm that encodes data into hypervectors. Learn-
ing tasks can be performed through a set of simple arith-
metic operations with excelling efficiency. Suppose the
HD dimensionality is D. Associative learning is performed
on hypervectors with well-defined operations: (1) Bind:
®({0,1}7,{0,1}P) = {0,1}P. Binding takes two hyper-
vectors and returns a hypervector that is dissimilar to both
operands. For binary hypervectors, binding is implemented
via element-wise XOR. (2) Bundle: ®(ZP,7°) = 7ZP.
Bundling induce the notion of set in HD space as it returns
a hypervector that is maximally similar to its constituting
elements. Bundling is implemented via addition. (3) Permute:
p(t,{0,1}P) = {0,1}”. Permutation is implemented using
logical shift, ¢ denoting the number of shifts.

Time-series HD Encoding. The first step in HD is to en-
code raw sample into hypervector. The goal of the HD encoder
is to map high-precision, low-dimensional real valued sensor
readings to low-precision, high-dimensional hypervector in
HD space, while preserving the spatial and temporal patterns.
In this paper, we use general encoding schemes for time-
series data, i.e., spatial-temporal encoder [8], [20]. In order to
represent numeric values, we generate level hypervectors. We
begin by quantize the support of sensor reading in to ¢ bins,
and each bin is represented with a level hypervector. Starting
with a random binary hypervector representing the Ist level,
each subsequent level can be generated by randomly flipping
px D (p denoting flipping rate) bits from the previous level. In
this way, we quantize sensor readings into hypervector while
preserving the structure. Fig. 2 (left) details the generation of
level hypervectors. ID hypervectors are randomly generated to
represent different modality.

Fig. 2 (right) shows the full encoding process. Consider
the encoding of xgj ) which is a time series of length T'. We
begin by quantizing real-valued sensor readings; each quan-
tized value is assigned to a level hypervector among fl...fq.
Next, the level hypervectors are bound together with their
corresponding ID hypervectors ID; to encode information of
modality j. To encode temporal information, we permute the
bound hypervectors by their corresponding temporal order ¢
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Fig. 3: The confusion matrices of the six activities in the HAR [21]
dataset when using bundling as HD multimodal fusion. The green
boxes highlight the case where fusion improves classification, while
the red boxes indicate when fusion degrades performance.

in the time window. Lastly we bind all hypervectors across
the temporal dimension and bipolarize it to produce the final

hypervector. Formally, encoding :chj ) can be expressed as:

0(x”) = BP((p(1, L1 ® ID;) ® ... ® p(T, L1 @ ID;))
C. Challenges of using HD in MFL

One main challenge for MFL is learning joint representation
by fusing the information from different sensing modalities.
Previous HD literature [13], [14] propose to simply bundle the
hypervectors of different modalities to form class hypervectors
and use cosine similarity metric for classification. We argue
that such method does not fully utilize the multimodal data.
Simply bundling hypervectors from different modalities makes
the implicit assumption that all modalities are of the same
importance for all situations. However, as many studies in the
literature on multimodal learning have demonstrated, that is
not the case [22]. We conduct a simple experiment on the
HAR dataset [21] with standard HD classification pipeline [11]
using bundling operation for multimodal fusion. Fig. 3 depicts
the confusion matrices during classification. Only marginal
performance improvement (sometimes even degradation) can
be observed when incorporating new modalities. In order to
capture the full inter-modality dynamics and complementary
information, a more intelligent multimodal fusion method is
needed, especially when modalities are many and diverse.
Motivated by this observaton, we propose MultimodalHD.

(€5

IV. PROPOSED FRAMEWORK: MULTIMODALHD

In this section, we present the proposed framework, Mul-
timodalHD, whose overall structure is shown in Fig. 4.
MultimodalHD uses a novel architecture that combines HD
(static HD encoder) and deep learning (attentive fusion and
aggregation). The design philosophy is to use HD encoder
to map time-series data into feature space instead of RNN,
use attention mechanism for multimodal fusion. As shown in
Fig. 4, MultimodalHD first encodes the multimodal time-series
data into hypervectors using a shared shared HD encoder.
Afterwards, multimodal information is fused together with a
novel attentive fusion design. Finally, the fused multimodal
representations are passed to a multilayer perceptron (MLP)
for classification. At federated level, we proposed an person-
alized aggregation strategy to alleviate modality interference
due to modality heterogeneity at cloud. Notably, the model
architecture of MultimodalHD is designed in a modality-
invariant way, which means that all clients models share the
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Fig.- 4: Top: Overall structure of MultimodalHD. Bottom: An
overview of MultimodalHD’s local computation pipeline. Parentheses
denoting tensor size.

same architecture and parameter space even in the presence
of heterogeneous and unavailable modalities.

We detail the the two key designs in MultimodalHD:
attentive multimodal fusion (Sec. IV-A) and aggregation
(Sec. IV-B).

A. Attentive Multimodal Fusion

Inspired by the attention mechanism [23], we apply inter-
modal attention to learn a fused representation from multi-
modal hypervectors. The self-attention mechanism provides
facilities for capturing dynamics in multimodal signals [24].
Inter-modality attention computation is shown in Fig. 5. By
modeling modality interactions through attention score, it
allows model to mix information from different modalities
intelligently which previous HD-based methods failed to do.

As shown in Fig. 4, given M, hypervector of dimension D,
to ensure the the efficiency of attention computation, we first
apply a trainable projection layer to reduce the dimensionality
of the hypervectors to E. Gaining inspiration from the posi-
tional encoding in transformers [23], [25], we create modality
encodings which are assigned to each sensing modalities and
added with the corresponding projected hypervectors. Unlike
the original positional encodings which are used to encode
the position and order of inputs, the purpose here is to
encourage the model to learn information associated with
each modality itself rather than the data from that modality
(e.g. same value from different modalities have different
physical interpretation). Additionally, a classification (CLS)
token, similar to the ViT [25] and BERT [26] architectures,
are concatenated with the projected multimodal hypervectors
before passing to attention computation. The output of CLS
token can serve as a attentively aggregate representation from
all modalities. Both modality encodings and CLS token are
implemented as trainable parameters (as part of wj on client
k) and are aggregated across clients. After projecting and
adding CLS/modality encodings, we have a matrix of size
((Mg 4+ 1) x E) denoted as P. The computation of attention
is shown in Fig. 5, formally as:

Q = unery . P: K= Wkey . P7 V = Waaiue - P (3)
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Fig. 5: The attention fusion module in MultimodalHD to fuse
hypervectors from different sensing modalities. Parts in red are
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Fig. 6: An intuitive example of modality interference at the cloud
that motivates the proximity-based aggregation.
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Here Wyuery,key,value are trainable attention weight ma-

trices. The dimension of attention weights only depends on

the embedding dimension F, while the dimension of P only
depends on E. Hence our attentive multimodal fusion module

and classifier are invariant to the number of modalities on a

client. We are able to use a uniform model architecture across

all clients with heterogeneous modalities.

Weak correlation

Attention = softmax(
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B. Proximity-based Cloud Aggregation

During aggregation phase, weights of attention module
( qzﬁry,key,mzue’ projection layer, CLS, modality encodings)
and the MLP classifiers are exchanged. At the cloud level, we
propose a new proximity-based cloud aggregation strategy to
mitigate interference between clients. Client models are trained
on different combination of modalities, thus they are likely to
be optimized towards different sub-regions in the parameter
space. We call this modality interference.

Fig. 6 shows an intuitive example of modality interference
between clients. It is more beneficial to emphasize the aggre-
gation between strongly correlated clients (type 2 and type 3)
for complementary information and information redundancy.
Weakly correlated clients (type 1 and type 2) is likely to result
in degraded performance due to modality mismatch. However,
it is very difficult to measure modality interference between
clients purely from their available modalities as we don’t know
the nature of the modality or what physical properties it is mea-
suring. Hence we propose an adaptive aggregation strategy at
the cloud using model weights similarity, to mitigate modality
interference while allowing for personalization.

Let {wi,..,wn} denote model weights from clients
1,..., N at the cloud. Let Sf7°* = cos(w;,w;) represents the



pairwise cosine similarity between client ¢ and j’s model
parameters. At the cloud, we adaptively adjust the aggregat-
ing weights based on the softmax of the cosine similarities
between clients:

exp (%ii)
softmax(S;” )y = ————"geos— (5)
S, exp (~ih)
N
wi = Zsoftmax(Sfos)k Wy 6)
k=1

Here 7 is a temperature hyperparameter. Intuitively, our
proximity-based aggregation strategy gives heavier weights to
models from clients with similar modalities and suppresses
modality interference between client pairs with dissimilar
modalities with a small SF9*.

V. EVALUATION
A. Experimental Setup

Datasets. We use three commonly used multimodal human
activity recognition datasets with continuous sensor readings,
HAR [21], MHEALTH [27] and OPPORTUNITY (OPP) chal-
lenge dataset [28]. The HAR dataset is collected with smart-
phones contains time-series accelerometer and gyroscope read-
ings of 30 subjects performing 6 common daily activities. Col-
lected via wearable sensing devices, the MHEALTH dataset
contains accelerometer, gyroscope and magenetometer data for
13 common activities. Following [5], we use accelerometer
and gyroscope data from OPP dataset with 17 mid-level
classes(Null class removed). The modality configuration in the
MFL setting is reported in Table II. In all of our experiment,
we use T=128 for all methods and split the datasets into
individual multimodal time series samples with 75% overlap.

Baselines. In a MFL setting, we evaluate MultimodalHD in
comparison to two representative state-of-the-art MFL meth-
ods. Split-AE [5] uses spilt-autoencoder to learn and extract
correlated representations from different modalities. FedM-
Split [7] uses separate blocks for available modalities on the
clients, and update the global model based on a dynamically
learned graph. We use 10 hidden units per LSTM block for
both baselines. All methods are implemented using PyTorch.
The important parameters in MultimodalHD are summarized
in Table III. For all methods that require a classifier, we use
a two-layer MLP with 25 hidden units in all experiments.

Metrics. We use weighed F1 score as our main metric for
classification performance: F; = % x 100. The
F1 score for one client is the weighted average of all classes’
F1 scores. For MFL, the overall performance is evaluated by
the average client Fls. This metric accounts personalization
on each client. For efficiency experiments, we measure and
compare the time consumption per epoch of training on a
Raspberry Pi model 4B.

B. Multimodal Federated Learning

We first experiment in the MFL setting where clients have
different available sensory modalities as shown in Table II.
The goal of personalized MFL is to achieve the best average
F1 by utilizing information from different modalities and

TABLE II: Sensor modality configurations in MFL on various
datasets. Acc., Gyr, Mag. denote Accelerometer, Gyroscope, and
Magetometer sensors in short respectively. #: Number of clients.

HAR [21] MHEALTH [27] OPP [28]
Acc.  Gyr. # Acc. Gyr. Mag. # | Acc. Gyr
v v 10 v v v 3 v v
X v 10 v X v 3 v X
v X 10 v v X 4 - -

[ NS 2N ST RE 5

TABLE III: Important parameters in MultimodalHD.

Param. Description Value (HAR, MHEALTH, OPP)
D HD dimension 1000
E Projected dimension 25
T Temperature in aggregation 2e™4, Te~*4, 2¢73
q Numner of quantization level 10, 100, 300
D flipping rate le™2,2¢72, 1e73

clients. Fig. 7(Top) shows the average weighted F1 score on all
multimodal clients. It can be seen that, on all datasets, Mul-
timodalHD achieves better/comparable final results compare
to state of the art MFL baselines. On HAR, MultimodalHD
also converges faster with regard to global communication
rounds. Although FedMSplit ends up with slightly better result
on HAR and MHEALTH datasets, we emphasize that the
performance of MultimodalHD is close to optimal with huge
efficiency advantage.

C. Effects of Different Federated Aggregation method

In this section we compare our proximity-based aggrega-
tion method with two commonly used aggragating methods:
FedAvg [4] and FedPer [29]. FedAvg performs a weighted
averaging and FedPer allows personalized weights for final
MLP layers. Fig. 7(Bottom) shows the performance of FedAvg
produces the least satisfactory results on HAR and MHEALTH
dataset, which aligns with the modality interference issue
discussed in Sec. IV-B as FedAvg equally aggregates models
trained on different modalities. FedPer partially fixes this
issue by allowing personalized weights, namely having the
final layer not to be overwritten during federated aggregation.
Our proximity-based aggregation in MultimodalHD further
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Fig. 7: Top: Under MFL setting, accuracy of MultimodalHD and
baseline. Bottom: Effects of different aggregation methods in Multi-
modalHD.
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Fig. 8: Time (in seconds) consumption per epoch of training using
different methods on Raspberry Pi 4B

improves on that by computing personalized model weights
that takes modality interference into account when aggregating
local models. The setup of OPP dataset is by far the most
homogeneous one among the three, as a results, all three
aggregation strategies shows similar final results.

D. Efficiency

Computation efficiency is a major bottleneck of edge
computing. Fig. 8 summarizes the time saving capability of
MultimodalHD. Compared to baselines, MultimodalHD takes
significantly less time to train, achieving an improvement of 2x
to 8x in terms of training cost on Raspberry Pi. The efficiency
gain can be attributed to the lightweight nature of HD-
based methods which avoids slow and expensive sequential
computation of RNNs. We also observed simillar patterns
in terms of energy consumption. Although MultimodalHD
requires multimodal time-series data to be encoded first, this
only needs to be done once at the start of the training, so
the cost of encoding diminishes as the iterative training goes
on. Since the encoder is static and highly parallelizable in
hardware [11], [12], encoding can also be done while data are
being collected with minimal cost.

VI. CONCLUSION

In this paper we propose MultimodalHD, a novel design for
efficient and effective Multimodal Federated Learning (MFL)
on clients with heterogeneous sensor modalities. Our hybrid
model design combines the efficiency of HD and capability
of Deep Learning. MultimodalHD uses a HD encoder to
process multimodal sensor data efficiently and uses an atten-
tion mechanism to achieve multimodal fusion across different
modalities. Additionally, we propose an aggregation method
suitable for MultimodalHD to prevent modality interference.
In our experiments, we systemically evaluate MultimodalHD
in comparison with state-of-the-art MFL approaches on multi-
modal sensory datasets. We find MultimodalHD to be 2x - 8x
more efficient in terms of time, while having better/comparable
classification performance.
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